QUESTION BANK

GE 2, LINEAR ALGEBRA

- Q 1 Let \mathbf{x} and \mathbf{y} be vectors in \mathbb{R}^n .
 - (a) Prove that if $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$ then $\mathbf{x} \cdot \mathbf{y} = 0$.
 - **(b)** Prove that if $\mathbf{x} \cdot \mathbf{y} = 0$ then $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$.
- Q 2 Prove that if $(\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} \mathbf{y}) = 0$, then $\|\mathbf{x}\| = \|\mathbf{y}\|$.
- Prove that $\frac{1}{2}(\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} \mathbf{y}\|^2) = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$ for any vectors \mathbf{x} , \mathbf{y} in \mathbb{R}^n .
- Prove that $\mathbf{x} \cdot \mathbf{y} = \frac{1}{4} (\|\mathbf{x} + \mathbf{y}\|^2 \|\mathbf{x} \mathbf{y}\|^2)$, if \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^n .
- Find the reduced row echelon form B of the following matrix A, keeping track of the row operations used:

$$\mathbf{A} = \left[\begin{array}{rrr} 4 & 0 & -20 \\ -2 & 0 & 11 \\ 3 & 1 & -15 \end{array} \right].$$

Q 6 Verify that the following matrices are row equivalent by showing that they have the same reduced row echelon form:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 9 \\ 0 & 1 & -3 \\ 0 & -2 & 5 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} -5 & 3 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}.$$

Q 7 Use row reduction to find the inverse, if it exists, for each of the following:

$$\begin{bmatrix}
5 & 7 & -6 \\
3 & 1 & -2 \\
1 & -5 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -2 & 3 \\
8 & -4 & 9 \\
-4 & 6 & -9
\end{bmatrix}$$

Q 8 Find the characteristic polynomial of

$$\left[\begin{array}{ccc}
5 & 1 & 4 \\
1 & 2 & 3 \\
3 & -1 & 1
\end{array}\right]$$

Solve for the eigenspace E_{λ} corresponding to the given eigenvalue λ

$$\begin{bmatrix} -5 & 2 & 0 \\ -8 & 3 & 0 \\ 4 & -2 & -1 \end{bmatrix}, \lambda = -1$$

- Prove that the set of all scalar multiples of the vector [1,3,2] in \mathbb{R}^3 forms a vector space with the usual operations on 3-vectors.
- Prove that \mathbb{R} is a vector space using the operations \oplus and \odot given by $\mathbf{x} \oplus \mathbf{y} = (x^3 + y^3)^{1/3}$ and $a \odot \mathbf{x} = (\sqrt[3]{a})x$.
- Show that the set \mathbb{R}^2 , with the usual scalar multiplication but with vector addition replaced by $[x, y] \oplus [w, z] = [x + w, 0]$, does *not* form a vector space.

- Q 13 Prove that the set of nonsingular $n \times n$ matrices under the usual operations is *not* a vector space.
- Show that the set of vectors of the form [a, b, 0, c, a 2b + c] in \mathbb{R}^5 forms a subspace of \mathbb{R}^5 under the usual operations.
- Show that the set of vectors of the form [2a 3b, a 5c, a, 4c b, c] in \mathbb{R}^5 forms a subspace of \mathbb{R}^5 under the usual operations.
- Prove that the set of discontinuous real-valued functions defined on \mathbb{R} (for example, $\mathbf{f}(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ 1 & \text{if } x > 0 \end{cases}$) with the usual function operations is not a subspace of the vector space of all real-valued functions with domain \mathbb{R} .
- Q 17 Prove that the set $S = \{[1, 3, -1], [2, 7, -3], [4, 8, -7]\}$ spans \mathbb{R}^3 .
- Prove that the set $S = \{[1, -2, 2], [3, -4, -1], [1, -4, 9], [0, 2, -7]\}$ does not span \mathbb{R}^3 .
- Q 19 Show that the set $\{x^2 + x + 1, x + 1, 1\}$ spans \mathcal{P}_2 . Prove that the set $\{x^2 + 4x - 3, 2x^2 + x + 5, 7x - 11\}$ does not span \mathcal{P}_2 .
- Q 20 Show that the following is a linearly dependent subset of \mathcal{M}_{22} :

$$\left\{ \left[\begin{array}{cc} 1 & -2 \\ 0 & 1 \end{array}\right], \left[\begin{array}{cc} 3 & 2 \\ -6 & 1 \end{array}\right], \left[\begin{array}{cc} 4 & -1 \\ -5 & 2 \end{array}\right], \left[\begin{array}{cc} 3 & -3 \\ 0 & 0 \end{array}\right] \right\}.$$

Q 21 Prove that the following is linearly independent in \mathcal{M}_{32} :

$$\left\{ \begin{bmatrix} 1 & 2 \\ -1 & 1 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 4 & 2 \\ -6 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & -1 \\ 2 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 7 \\ 5 & 2 \\ -1 & 6 \end{bmatrix} \right\}.$$

Q 22 Prove that the following set is a basis for \mathcal{M}_{22} by showing that it spans \mathcal{M}_{22} and is linearly independent:

$$\left\{ \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -3 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 5 & -2 \\ 0 & -3 \end{bmatrix} \right\}.$$

- Q 23 Show that the subset $\{x^4, x^4 x^3, x^4 x^3 + x^2, x^4 x^3 + x^2 x, x^3 1\}$ of \mathcal{P}_4 is a basis for \mathcal{P}_4 .
- Q 24 Let W be the solution set to the matrix equation AX = O, where

$$\mathbf{A} = \begin{bmatrix} -1 & -2 & -4 & 8 \\ 3 & 4 & 6 & -14 \\ -2 & -1 & 1 & 7 \\ 1 & 0 & -2 & 0 \\ 2 & 3 & 5 & -12 \end{bmatrix}.$$

- (a) Show that W is a subspace of \mathbb{R}^4 .
- **(b)** Find a basis for \mathcal{W} .
- (c) Show that $\dim(W) + \operatorname{rank}(A) = 4$.